
1 Structure of the protocol

1.1 Overview
In this lab, we’ll look at a commitment protocol which uses a hash function to
commit to a message using some randomness. The security of these schemes depend
on the function being used, and so we will look at two different choices of functions
f for the protocol. The overall structure is the same in both cases. The protocol
using a function f is as follows:

To commit a fixed 1-bit message m, Alice does the following:

• Uniformly picks some n−bit randomness r $←− {0, 1}n.

• Computes commitment value c = f(m||r) where || is bitstring concatenation.

• Sends Bob the value c.

Later, to show Bob the value that she committed to, Alice then sends over m, r
and Bob verifies that the initial value c that was sent to him was computed using
m and r. So he checks if f(m||r) = c.

However, since we’re using quantum computers, things are slightly more com-
plicated as Alice does not send a classical values but instead sends a series of
qubits.

1.2 Making Alice Unitary
On Figure 1 Alice has also been made unitary - choosing the random value r is
being done by applying H⊗n and then performing a partial trace. Remember that
the density matrix for a uniformly chosen classical value is

ρu2−n
∑

x∈{0,1}n

|x〉〈x|

And this is not the same as just taking |0 . . . 0〉 and applying H⊗n to it.

H⊗n|0 . . . 0〉 =
∑

x∈{0,1}n

2−n
2 |x〉

ρh = 2−n
∑

x∈{0,1}n

∑
x̃∈{0,1}n

|x〉〈x̃|

However, we can add a buffer system, and CNOT the values over.

(
∑

x∈{0,1}n

2−n
2 |x〉)⊗ |0 . . . 0〉 →CNOT

∑
x∈{0,1}n

2−n
2 |x〉 ⊗ |x〉
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Figure 1: The circuit for the commitment protocol using function f .

ρb = 2−n(
∑

x∈{0,1}n

|x〉 ⊗ |x〉)(
∑

x̃∈{0,1}n

|x̃〉 ⊗ |x̃〉)†

= 2−n
∑

x∈{0,1}n

∑
x̃∈{0,1}n

(|x〉 ⊗ |x〉)(〈x̃| ⊗ 〈x̃|)

= 2−n
∑

x∈{0,1}n

∑
x̃∈{0,1}n

|x〉〈x̃| ⊗ |x〉〈x̃|

And now tracing away the second buffer register (which is also done by restricting
our view to the first system) leaves only elements where x = x̃ as those are the
only ones with non-zero trace.

trb ρb = 2−n
∑

x∈{0,1}n

|x〉〈x|

Which is exactly the density matrix of picking a uniformly random classical bitstring.
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1.3 Description of the state
We now describe the state of the system in the commitment phase of the protocol.
In the beginning, Alice starts out in the state

|Ψm
0 〉 = |m, 0, 0, 0〉

where the 0’s stand for 0 . . . 0 bitstrings of all zeroes, of n, l, n length respectively.
The first n-bit zero is where the randomness will go, the l-bit zero is where the
function of the output will go, and the third zero is for the copy of the n-bit
randomness that gets traced out.

Then the Hadamard gate is applied to the register for the randomness.

|Ψm
1 〉 = (I ⊗Hn ⊗ I ⊗ I)|Ψm

0 〉 = |m〉 ⊗ (
∑

r∈{0,1}n

2−n
2 |r〉)⊗ |0〉 ⊗ |0〉 =

∑
r∈{0,1}n

2−n
2 |m, r, 0, 0〉

And then the randomness is CNOT’ed over to the buffer register.

|Ψm
2 〉 =

∑
r∈{0,1}n

2−n
2 |m, r, 0, r〉

Then the unitary Uf is applied to |Ψm
2 〉 to calculate the commitment value.

|Ψm
3 〉 = (Uf ⊗ I)|Ψm

2 〉 =
∑

r∈{0,1}n

2−n
2 |m, r, f(m||r), r〉

And then the commitment part is sent to Bob.

|Ψm〉 =
∑

r∈{0,1}n

2−n
2 |m, r, r〉A ⊗ |f(m||r)〉B

And when we trace out the extra buffer register that contains the randomness copy,
we have a nice density matrix representation.

ρm
AB =

∑
r∈{0,1}n

2−n|m, r〉〈m, r|A ⊗ |f(m||r)〉〈f(m||r)|B

2 Security definitions
Since we are going to show that the schemes are not perfectly secure, we need
to first define what security actually means. Commitment schemes are described
using two properties that go against one another.

The binding property states that the commitment value that Alice produces
needs to "lock in" her choice of message. That once she has committed to some
secret message and "put it in a box" using the commitment scheme, she can’t then
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open the commitment in a way that fools us into thinking that she committed
using another message instead.

The hiding property states that the commitment value should not reveal what
the message is - that committing to a message m1 looks the same as committing
to a message m2.

These goals go against one another because the binding property requires there
to be a strong link between the commitment value and the secret message, while
the hiding property wants to link to be weak, in order to allow multiple messages
to give similar looking commitment values.

However, we can still achieve useful and secure commitment schemes by not
requiring perfection. This is similar to encryption, where we can only achieve
perfect secrecy if the key size is at least as large as the message size, which would
be impractical. And yet we still have strong, though imperfect, systems.

2.1 0-Binding property
For the ε-binding property, we play a game with Alice. We let her commit to some
value. Then we pick a message b and tell her to provide a valid opening such that
the verification passes.

In the definition, we say that Alice has a fixed algorithm A for creating the
commitment, and then algorithms A0 for when we tell her to open to 0, and A1 for
when we tell her to open to 1.

We say that a protocol is ε-binding if the probability of Alice succeeding in
both of the cases is 1 + ε. More specifically, we say that

P0 + P1 = 1 + ε

where Pb is the probability that Alice produces a valid opening after running A
and then Ab.

2.2 0-Hiding property
For the 0-hiding property, we want the protocol to be perfectly hiding - meaning
the commitment has to perfectly hide which m ∈ {0, 1} was committed. This
means that Bob can’t distinguish from the commitment message two runs of the
protocol - ρ0

AB where Alice committed 0, and ρ1
AB where Alice committed 1.

Formally, we can express this as

TD(trA ρ0
AB, trA ρ1

AB) = 0

Or alternatively as

trA ρ0
AB = trA ρ1

AB
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We can begin by tracing out Alice’s part of the system from the above state to
find trA ρm

AB.
trA ρm

AB =
∑

r∈{0,1}n

2−n trA (|m, r〉〈m, r|A ⊗ |f(m||r)〉〈f(m||r)|B)
∑

r∈{0,1}n

2−n (tr |m, r〉〈m, r|A) · |f(m||r)〉〈f(m||r)|B

Notice that since each |m, r〉 is a basis state, |r,m〉〈r,m| consists of just one 1 on
the diagonal, therefore it has trace 1. Alternatively, we can also see that from the
fact that tr |Ψ〉〈Ψ| = |||Ψ〉||2.

Therefore we can easily trace Alice’s part out.
trA ρm

AB =
∑

r∈{0,1}n

2−n (tr |m, r〉〈m, r|A)⊗ |f(m||r)〉〈f(m||r)|B

=
∑

r∈{0,1}n

2−n 1 · |f(m||r)〉〈f(m||r)|B

=
∑

r∈{0,1}n

2−n |f(m||r)〉〈f(m||r)|B

This is as descriptive as we can be about the state without any knowledge of
the function f . To analyze this further, we must specify what kind of function we
are using.

3 Example 1: Injective function
The first function we’re examining is an injective one, that is for every pair of
inputs that are distinct, ∀x, x′ ∈ {0, 1}n+1x 6= x′ ⇒ f(x) 6= f(x′). In simple terms,
it means that if the outputs to the function are different from one another, then
the outputs will be as well.

Our functions have the type f : {0, 1}n+1 → {0, 1}l. That is, they take a
message bit and n bits of randomness, and give us an l-bit string as the output.
Notice that by fixing the message bit, we have two distinct functions, f1(x) = f(1||r)
and f0(x) = f(0||x). These functions are both of the type fm : {0, 1}n → {0, 1}l,
so they have the same domain and codomain.

We can then visualize the functions as in Figure 3. Note that there are no
inputs r, r′ such that f0(r) = f1(r′) as this would mean f(0||r) = f(1||r′) which
contradicts the injectivity. So the ranges of f0 and f1 are completely disjoint.

3.1 Breaking the 0-Hiding property
We now examine if the above commitment scheme is 0-hiding when we use the above
function to commit. Recall that we wanted to show that TD(trA ρ0

AB, trA ρ1
AB) = 0
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Figure 2: Visualization of functions f0 (blue) and f1 (orange) in case 1.

and that

trA ρm
AB =

∑
r∈{0,1}n

2−n |f(m||r)〉〈f(m||r)|B

Now, let’s see what the actual matrices of trA ρ0
AB and trA ρ1

AB would be.
First notice that they are purely diagonal matrices, as they’re of the form∑

y |y〉〈y| where the y denote the possible outputs.
Second, the diagonal elements are completely disjoint in both matrices. Meaning

that if there is a non-zero element on index i in trA ρ
0
AB, then in trA ρ

0
AB the element

at index i must be zero. This is because otherwise the output |i〉〈i| would appear
in both cases with some non-zero probability, which means that for some r, r′ we
have that f(0||r) = f(1||r′) = i. But this clearly can’t be, because different inputs
get mapped to different outputs, and the first bit is guaranteed to be different for
the two inputs.

When computing the trace distance explicitly, we can show that this scheme is
not hiding at all:

TD(trA ρ0
AB, trA ρ1

AB) =

= 1
2tr |

∑
r∈{0,1}n

2−n |f(0||r)〉〈f(0||r)|B −
∑

r∈{0,1}n

2−n |f(1||r)〉〈f(1||r)|B|

= 1
2tr |

∑
r∈{0,1}n

2−n |f(0||r)〉〈f(0||r)|B − |f(1||r)〉〈f(1||r)|B|

= 1
2tr |

∑
r∈{0,1}n,m∈{0,1}

2−n |f(m||r)〉〈f(m||r)|B · (−1)m|

Now because of the injectivity, all elements of this sum are distinct, and this is a
sum over 2 · 2n elements. Since this is also a diagonal matrix, we can take the trace
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Figure 3: Visualization of functions f0 (blue) and f1 (orange) in case 2.

of the absolute value by taking the absolute value of the diagonal elements.

= 1
2tr |

∑
r∈{0,1}n,m∈{0,1}

2−n |f(m||r)〉〈f(m||r)|B · (−1)m|

= 1
2tr

∑
r∈{0,1}n,m∈{0,1}

2−n 1 = 1
22−n · 2 · 2n = 1

And since the trace distance is 1 instead of 0, the scheme is 1-hiding, which is to
say not at all. The cases between m = 0 and m = 1 are perfectly distinguishable.

4 Example 2: Two bijections
For the second function, we have a function of the type f : {0, 1}n+1 → {0, 1}n. In
addition, we have the following property:

∀y,m : ∃1r : f(m||r) = y

Which states that for every output y and message m, you can find a unique
randomness r to get that output, f(m||r) = y. This leads to some interesting and
useful effects. For one, notice that f0 and f1 are now bijections.

To see that f0 is surjective, see that for every output element y we can find an
r such that f(0||r) = y. This follows directly by the definition of the property.

To see that f0 is injective, we have to pay attention to the dimensions. Because
f0 maps randomness from {0, 1}n to output elements in {0, 1}n, we can’t have that
f(0||r) = f(0||r′) for r 6= r′. If there were two r’s which did map to the same
output element, then the number of all possible output elements would be 2n − 1.
This would mean that one output element would not have a valid preimage.
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4.1 Proving 0-Hiding property
Again, we want to show that TD(trA ρ0

AB, trA ρ1
AB) = 0 knowing that

trA ρm
AB =

∑
r∈{0,1}n

2−n |f(m||r)〉〈f(m||r)|B

In this case, it is easier to show that trA ρ0
AB = trA ρ1

AB directly. Consider the
density matrix of trA ρ0

AB. We have that

trA ρ0
AB =

∑
r∈{0,1}n

2−n |f(0||r)〉〈f(0||r)|B =
∑

y∈{0,1}n

|y〉〈y|

Since the sum is over all 2n possible values for r, and the output of f0(r) is distinct
for every r, the set of all images is also all possible 2n bitstrings. Notice that the
same argumentation applies for f1.

trA ρ1
AB =

∑
r∈{0,1}n

2−n |f(1||r)〉〈f(1||r)|B =
∑

y∈{0,1}n

|y〉〈y|

And so the two density matrices are the same, giving us 0-hiding. To get some
intuition as to why this is, notice that for every output value y, I can find r such
that f(0||r) = y. But I can also find an r′ such that f(1||r′) = y. And thus seeing
only the images gives no information about the message.

However we need to be careful when applying reasoning like this as quantum
cryptography can be anything but intuitive, and so we always need to have strict
formal results.

4.2 Breaking the 0-Binding property
To show that the scheme is not perfectly binding, we will show that Alice can
commit using message m and then provide an opening that is valid for the other
message m.

Recall that after running the protocol in the commitment phase for message m,
the state of the system is

|Ψm〉 =
∑

r∈{0,1}n

2−n
2 |m, r, r〉A ⊗ |f(m||r)〉B

We want to turn |Ψ0〉 to |Ψ1〉. To do this we will use the simulataneous
Schmidt decomposition (Lemma 26 in lecture notes). We have already shown that
trA |Ψ0〉〈Ψ0| = trA |Ψ1〉〈Ψ1|. That was exactly what we did in the 0-hiding section
- that when Alice’s part is traced away, then the view is the same.
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The simultaneous Schmidt decomposition states that for a choice of orthonormal
sets {|α〉i} and {|β〉i} there are reals λi ≥ 0 with ∑

i λ
2
i = 1 such that

|Ψ0〉 =
∑

i

λi|αi〉 ⊗ |βi〉 and |Ψ1〉 =
∑

i

λi|α̃i〉 ⊗ |βi〉

Now, let’s choose our basis sets. We will take |βy〉 = |y〉, the set of all possible
outputs of the functions. For the α sets, we will pick the input sets of both f0 and
f1. Meaning that |αy〉 will correspond to the state Alice must have in order for f0
to output y.

|αy〉 = |0, f−1
0 (y), f−1

0 (y)〉
|α̃y〉 = |1, f−1

1 (y), f−1
1 (y)〉

And all λy = 2−n
2 . f−1

0 (y) is the inversion of f0 which gives us the randomness r
needed such that f(0||r) = y. Now all we need is a conversion from |αy〉 to the
corresponding |α̃y〉. We want to go from the state that produces y when committing
0 to the state that produces y when committing 1.

More specifically, we want to find U such that U |αy〉 = |α̃y〉. If I know f0 and
f−1

1 then this is easy. Suppose I am given some randomness r and I am tasked
with finding r′ such that f(0||r) = f(1||r′). Then I can apply f0 to find y = f(0||r).
And then I can apply f−1

1 to find the unique randomness that gives me f(1||r′) = y.
Thus I can find the r′ from r using r′ = f−1

1 (f0(r)). This is what the unitary U
will do to both registers which contain the randomness.

U |a, b, c〉 → |a, f−1
1 (f0(b)), f−1

1 (f0(c))〉

The reason why it is not expressed as U |0, r, r〉 → . . . is because the unitary needs
to be a valid function for all basis states, which includes states aren’t of the form
|0, r, r〉 (so states where the last two registers differ).

Now that we have the U , Alice can turn a state that is a run of the protocol
with the message 0 to a run of the protocol with message 1.

(U ⊗ I)|Ψ0〉 = |Ψ1〉

And thus Alice has an attack against the binding property of the commitment
scheme. Her commitment algorithm A will just be to commit to the message 0.
Then if she is asked to open to 0, she doesn’t run U but just sends over the valid
opening that she has. If she is asked to open to 1, she runs U and thus has a valid
opening for 1 that she sends over.
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Figure 4: The circuit for the commitment protocol using function f .
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